Appendix C Hydrologic Analysis Methods and Results

This appendix describes the methods used to develop the hydrology for the Touchet River HEC-RAS model. Flood recurrence intervals for the 2-, 5-, 10-, 25-, 50-, and 100-year events were estimated using data from the U.S. Geological Survey (USGS) StreamStats database (USGS 2019a). The gage data for this basin were limited and incomplete, with some gages only having records in the mid-1900s and some with data dating back only 10 to 15 years. Due to the lack of a complete hydrology data set, the entire model hydrology was developed using the regressions in the USGS StreamStats database (USGS 2019a).

1.1 Hydrologic Data

1.1.1 Stream Gage Data

The streamflow gages on the Touchet River provided an incomplete set of flow data with data from the mid-1900s and the past 15 years. The potential sources of discharge data are shown in Table C-1. In addition to discontinuity, the more recent data provided by the Washington State Department of Ecology (Ecology) gages were inaccurate for the highest flows, which are needed to statistically determine flood recurrence intervals. Inaccuracy in peak flow measurements was related to high water levels. Ecology reports that nearly all the yearly and monthly peak data points at these gages were above the rating and were either extrapolated or estimated (Ecology 2019). The available hydrologic data, therefore, did not provide a sufficiently continuous or accurate data set to develop flood recurrence intervals.

Table C-1 Touchet River Hydrologic Data Sources

	Data Source	Data Type	Data Timeframe
USGS Gages	14017000 Touchet River @Bolles	Daily Data	2/01/1924 to 10/10/1989
(USGS 2019b)	14016500 North Fork Touchet Near Dayton	Daily Data	4/01/1941 to 9/29/1968
Ecology Gages	32B100 Touchet River @ Bolles ¹	15-Minute Data	6/2002 to 11/2002 and 1/2007 to Present
(Ecology 2019)	32E050 NF Touchet above Dayton	15-Minute Data	12/2002 to Present

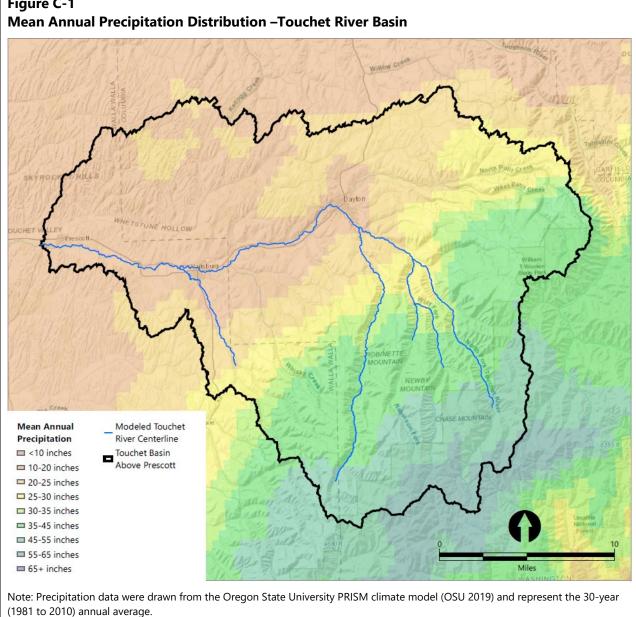
Note:

1. This gage is in the same location as the old USGS gage at Bolles, but the two North Fork Touchet gages from USGS and Ecology are in different locations.

1.1.2 USGS StreamStats Database

Because the gage data were inaccurate and incomplete, regressions from the USGS StreamStats database were used to determine peak flow profiles for all the subbasins (USGS 2019a). The peak flow discharges were determined directly from the database using a regression equation that accounts for basin area, mean annual precipitation, and basin percent forest cover (Mastin et al. 2016). The constants from Region 1 encompassing southeast Washington and Northeast Oregon were used, and the basin area, annual precipitation, and percent forest cover were obtained directly from the data in the StreamStats database (USGS 2019a). The regression to determine basin peak discharges is shown in Equation C-1.

-													
$Q = \frac{a}{a}$	A ^b 10 ^{cP} 10 ^{dCAN}												
where	e:												
a,b,c,o	= b	given con	stants fo	or the p	barticu	ular re	egres	ssion r	egion	and re	currend	e inter	val
^		-		•			-		-				
Α	=	basin area	i (mi^2)										
		basin area	` '	ا محمد ا		(in							
A P	=	basin area mean basi	` '	al preci	pitatio	on (ir	ı)						
			in annua	al preci	pitatio	on (ir	1)						
P CAN	= = Number of	mean basi basin % fc	in annua prested	al preci	·	oefficents	-	s		SEM	R	ange of values	5
Р	=	mean basi	in annua prested	•	·	-	-	S _p (percent)	R ² _{pseudo}	SEM (percent)	R	lange of values P	s CAN
P CAN Regression	= = Number of stations used	mean basi basin % fc	in annua prested	Constant	C	oefficents	ş	S _p (percent) 95.04	R ² _{pseudo} 85.1		A	•	
P CAN Regression region	Number of stations used in analysis	mean basi basin % fc	in annua prested Annual exceedance probability	Constant a	С р	oefficents c	s d	(percent)		(percent)	A	Р	CAN
P CAN Regression region	Number of stations used in analysis	mean basi basin % fc	Annual exceedance probability 0.5 0.2 0.1	Constant a 3.846 12.106 22.080	0.745 0.713 0.695	0efficents c 0.032 0.028 0.026	<i>d</i> 0.0078 0.0098 0.0107	(percent) 95.04 71.93 70.67	85.1 87.66 86.72	(percent) 90.72 68.33 66.91	A	Р	CAN
P CAN Regression region	Number of stations used in analysis	mean basi basin % fc	Annual exceedance probability 0.5 0.2 0.1 0.04	Constant a 3.846 12.106 22.080 42.170	0.745 0.745 0.713 0.695 0.674	oefficents c 0.032 0.028 0.026 0.024	<i>d</i> 0.0078 0.0098 0.0107 0.0117	(percent) 95.04 71.93 70.67 77.42	85.1 87.66 86.72 83.38	(percent) 90.72 68.33 66.91 73.12	A	Р	CAN
P CAN Regression region	Number of stations used in analysis	mean basi basin % fc	Annual exceedance probability 0.5 0.2 0.1 0.04 0.02	Constant a 3.846 12.106 22.080 42.170 63.826	0.745 0.713 0.695 0.674 0.661	0.032 0.028 0.026 0.024 0.023	<i>d</i> 0.0078 0.0098 0.0107 0.0117 0.0124	(percent) 95.04 71.93 70.67 77.42 84.76	85.1 87.66 86.72 83.38 80.32	(percent) 90.72 68.33 66.91 73.12 79.92	A	Р	CAN
P CAN Regression region	Number of stations used in analysis	mean basi basin % fc	Annual exceedance probability 0.5 0.2 0.1 0.04	Constant a 3.846 12.106 22.080 42.170	0.745 0.745 0.713 0.695 0.674	oefficents c 0.032 0.028 0.026 0.024	<i>d</i> 0.0078 0.0098 0.0107 0.0117	(percent) 95.04 71.93 70.67 77.42	85.1 87.66 86.72 83.38	(percent) 90.72 68.33 66.91 73.12	A	Р	CAN


Note:

1. Annual exceedance probabilities of 0.5, 0.2, and 0.1 correspond to 2-, 5-, and 10-year events.

1.1.3 Precipitation Data

The USGS StreamStats database uses geospatial precipitation data from the PRISM climate model developed at Oregon State University to estimate streamflow (OSU 2019). A map of the 30-year annual average (1981 to 2010) precipitation estimates for the Touchet basin is shown in Figure C-1.

DRAFT

Figure C-1

1.1.4 **Basin Delineations**

Basin and subbasin delineations are available as geospatial data through the USGS StreamStats database (USGS 2019a) for the Touchet River. These delineations provided information on contributing area, basin shape, slope, and elevation. Basin breaks were based on factors including incoming tributaries or landmarks like bridges. The selected subbasins and gage locations in the Touchet basin are listed in Table C-2. These locations are also shown on the map in Figure C-2.

Table C-2 Touchet River Tributaries and Basin Areas

North	n Fork	Wolf	Fork	Robinson Fork		
Location	Basin Area (mi ²)	Location	Basin Area (mi ²)	Location	Basin Area (mi ²)	
Downstream of Wolf Fork	101.94	Upstream of North Fork	41.86	Upstream of Wolf Fork	15.55	
Downstream of Jim Creek	40.52	Downstream of Robinson Fork	37.38	Upstream of Model	13.36	
Downstream of Lewis Creek	27.85	Downstream of Coates Creek	15.96			
Downstream of Spangler Creek	16.85					
South	n Fork	Mainsten	Mainstem Touchet Cop		ei Creek	
Location	Basin Area (mi²)	Location	Basin Area (mi ²)	Location	Basin Area (mi ²)	
Upstream of Mainstem	43.64	Downstream of Whetstone Creek	478.07	Upstream of Mainstem	36.48	
at First Crossing	38.45	at Bolles USGS Gage	357.42	at Meinberg Road	35.17	
Downstream of Unnamed Trib.	35.56	Downstream of Coppei Creek	349.42	at Mccowan Road	25.67	
at Second Crossing	29.91	Downstream of Whiskey Creek	299.42	Below Forks	23.15	
Downstream of Griffin Fork	19.07	Downstream of Patit Creek	229.2			
Downstream of Burnt Fork	12.28	Downstream of Forks	158.44			
Upstream of Model	4.6					

Note:

mi²: square mile

1.2 Hydrologic Analysis

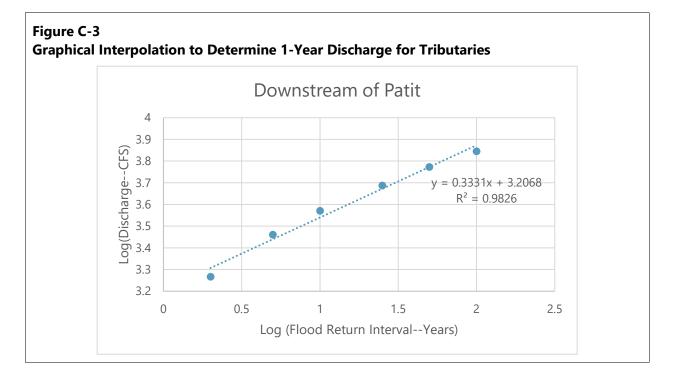
1.2.1 Flood Recurrence Interval Analysis

Recurrence intervals for the 2-, 5-, 10-, 25-, 50-, and 100-year events were calculated using the USGS StreamStats database (USGS 2019a) at each of the locations shown in Table C-2 and Figure C-2. These peak flow profiles were used as inputs to the 1D HEC-RAS model of the Touchet basin. The extent of the model is outlined in Figure C-2. Hydrologic calculation points were added at the upstream ends of each tributary. In addition, peak flow recurrence intervals were calculated below the mouth of each major tributary in addition to landmarks such as bridges and stream gages.

DRAFT

An error in the StreamStats database provided a challenge for computing the hydrology at junctions within the model. Running flood discharge computations in StreamStats immediately above the junctions and manually summing the values significantly overestimated running StreamStats immediately below the same confluence (USGS 2019a). To avoid having a large amount of flow erroneously created at each confluence, a StreamStats calculation was made downstream of each junction and upstream of the junction on the smaller of the two tributaries, but not upstream of the junction on the larger tributary. This method ensured flood discharges increased from upstream to downstream throughout the basin while obeying conservation of flow at the junctions.

Figure C-2 Touchet Basin Hydrologic Calculation Points



1.2.2 1-Year Flows

The 1-year flows for all the tributaries were estimated by graphical interpolation using the discharges for the 2- to 100-year peak floods previously obtained from the StreamStats database. The 2- to 100-year floods for each model flow change location were plotted on a log-log plot, and the linear trendline was calculated and used to determine the 1-year flood. An example of the graphical interpolation process is shown in Figure C-3. The base ten exponential of the y-intercept on each graph was the calculated 1-year flood discharge. The values were then checked using a 1-year flood

DRAFT

generated using a Log-Pearson Type III approach on available gage data from the mainstem at Bolles and the North Fork.

1.2.3 Final Flows Used for Modeling

Final reporting of the basin and tributary hydrology is provided in Table C-3. These flows, measured in cfs, were used in the final modeling effort, in addition to the standard return period statistics. The river mile within each fork or tributary is reported in addition to the flood recurrence intervals. The ultimate use of these data was to develop inundation extents for a floodplain connectivity analysis.

Table C-3 Model Hydrology

River Mile of Flow	Tributary/ Location									
Change	Name	1-year	2-year	5-year	10-year	25-year	50-year	100-year		
	North Fork Model Hydrology									
3.95	Downstream of Wolf Fork	1,061	1,200	1,700	2,080	2,600	3,070	3,530		
8.22	Downstream of Jim Creek	643	727	993	1,200	1,480	1,740	1,980		
11.92	Downstream of Lewis Creek	542	607	777	912	1,090	1,260	1,410		
15.36	Downstream of Spangler Creek	418	467	574	662	779	889	989		
			Wolf Fork	Model Hydr	ology					
0.07	Upstream of North Fork	506	578	842	1,050	1,340	1,600	1,860		
3.04	Downstream of Robinson Fork	477	542	762	935	1,170	1,390	1,590		
7.92	Downstream of Coates Creek	309	349	461	550	672	782	888		
		R	obinson For	k Model Hy	drology					
0.04	Upstream of Wolf Fork	223	257	379	477	615	740	865		
2.5	Upstream of Model	203	233	331	410	520	619	717		

River Mile of Flow	Tributary/ Location	Flow (cfs) per Return Period							
Change	Name	1-year	2-year	5-year	10-year	25-year	50-year	100-year	
			South Fork	Model Hyd	rology				
0.05	Upstream of Mainstem	539	624	978	1,260	1,670	2,040	2,420	
3.32	at First Crossing of South Fork Rd	533	612	917	1,160	1,500	1,810	2,120	
6.05	Downstream of Unnamed Trib.	519	594	870	1,090	1,390	1,670	1,940	
8.91	at Second Crossing of South Fork Rd	466	530	746	916	1,150	1,360	1,570	
15.61	Downstream of Griffin Fork	360	407	539	643	785	913	1,040	
16.98	Downstream of Burnt Fork	273	309	408	487	595	694	788	
18.22	Upstream of Model	125	143	196	238	297	351	403	
		Ма	instem Touc	het Model I	Hydrology				
0.06	Downstream of Whetstone Creek	2080	2,430	4,340	5,910	8,240	10,400	12,700	
7.15	at Bolles USGS Gage	1950	2,260	3,820	5,080	6,900	8,570	10,300	
9.9	Downstream of Coppei Creek	1944	2,250	3,780	5,020	6,800	8,430	10,100	
13.25	Downstream of Whiskey Creek	1771	2050	3,390	4,470	6,020	7,430	8,900	
21.96	Downstream of Patit Creek	1610	1850	2,890	3,720	4,870	5,930	7,000	
23.82	Downstream of Forks	1415	1610	2,360	2,940	3,740	4,460	5,180	

River Mile of Flow	Tributary/ Location	Flow (cfs) per Return Period							
Change	Name	1-year	2-year	5-year	10-year	25-year	50-year	100-year	
	Coppei Creek Model Hydrology								
0.06	Upstream of Mainstem	367	441	851	1,210	1,780	2,320	2,930	
2.23	at Meinberg Road	367	441	847	1,200	1,760	2,300	2,890	
5.21	at Mccowan Road	351	417	756	1,050	1,490	1,910	2,370	
8.07	Below Forks	350	415	736	1,010	1,420	1,810	2,230	

1.3 References

- Ecology (Washington State Department of Ecology), 2019. Flow Monitoring Network. Available at: https://fortress.wa.gov/ecy/eap/flows/regions/state.
- Mastin, M.C., C.P. Konrad, A.G. Veilleux, and A.E. Tecca, 2016. *Magnitude, frequency, and trends of floods at gaged and ungaged sites in Washington, based on data through water year 2014.* Version 1.1, October 2016. U.S. Geological Survey Scientific Investigations Report No. 2016–5118, 70 pp. Available at: https://pubs.er.usgs.gov/publication/sir20165118.
- OSU (Oregon State University Climate Service), 2019. PRISM Climate Group. Available at: http://prism.oregonstate.edu. Map Created September 2019.
- USGS (U.S. Geological Survey), 2019a. StreamStats in Washington. Available at: https://streamstats.usgs.gov/ss/.
- USGS, 2019b. National Water Information System: Mapper. Available at: https://maps.waterdata.usgs.gov/mapper/index.html?state=wa.